Sports Betting Tips - If Bets and Reverse Teasers

· 10 min read
Sports Betting Tips - If Bets and Reverse Teasers

"IF" Bets and Reverses

I mentioned last week, that if your book offers "if/reverses," it is possible to play those instead of parlays. Some of you may not discover how to bet an "if/reverse." A complete explanation and comparison of "if" bets, "if/reverses," and parlays follows, along with the situations in which each is best..

An "if" bet is exactly what it appears like. You bet Team A and IF it wins then you place an equal amount on Team B. A parlay with two games going off at different times is a type of "if" bet where you bet on the first team, and when it wins you bet double on the next team. With a true "if" bet, rather than betting double on the next team, you bet an equal amount on the next team.

It is possible to avoid two calls to the bookmaker and lock in the current line on a later game by telling your bookmaker you wish to make an "if" bet. "If" bets can even be made on two games kicking off at the same time. The bookmaker will wait before first game is over. If the initial game wins, he'll put the same amount on the second game though it has already been played.

Although an "if" bet is actually two straight bets at normal vig, you cannot decide later that you no longer want the second bet. As soon as you make an "if" bet, the second bet cannot be cancelled, even if the second game has not gone off yet. If the first game wins, you should have action on the next game. Because of this, there is less control over an "if" bet than over two straight bets. Once the two games you bet overlap in time, however, the only method to bet one only when another wins is by placing an "if" bet. Of course, when two games overlap in time, cancellation of the second game bet isn't an issue. It ought to be noted, that when both games start at differing times, most books will not allow you to complete the next game later. You must designate both teams once you make the bet.

You can create an "if" bet by saying to the bookmaker, "I wish to make an 'if' bet," and then, "Give me Team A IF Team B for $100." Giving your bookmaker that instruction will be the identical to betting $110 to win $100 on Team A, and, only if Team A wins, betting another $110 to win $100 on Team B.

If the initial team in the "if" bet loses, there is absolutely no bet on the next team. Whether or not the next team wins of loses, your total loss on the "if" bet would be $110 when you lose on the initial team. If the first team wins, however, you'll have a bet of $110 to win $100 going on the second team. If so, if the second team loses, your total loss will be just the $10 of vig on the split of the two teams. If both games win, you would win $100 on Team A and $100 on Team B, for a total win of $200. Thus, the maximum loss on an "if" will be $110, and the utmost win would be $200. This is balanced by the disadvantage of losing the entire $110, instead of just $10 of vig, each and every time the teams split with the first team in the bet losing.

As you can plainly see, it matters a great deal which game you put first within an "if" bet. In the event that you put the loser first in a split, then you lose your full bet. If you split however the loser may be the second team in the bet, you then only lose the vig.

Bettors soon discovered that the way to avoid the uncertainty caused by the order of wins and loses is to make two "if" bets putting each team first. Instead of betting $110 on " Team A if Team B," you would bet just $55 on " Team A if Team B." and make a second "if" bet reversing the order of the teams for another $55. The next bet would put Team B first and Team A second. This sort of double bet, reversing the order of the same two teams, is named an "if/reverse" or sometimes just a "reverse."

A "reverse" is two separate "if" bets:


Team A if Team B for $55 to win $50; and

Team B if Team A for $55 to win $50.

bj88  don't have to state both bets. You only tell the clerk you want to bet a "reverse," both teams, and the amount.

If both teams win, the result would be the identical to if you played a single "if" bet for $100. You win $50 on Team A in the first "if bet, and then $50 on Team B, for a total win of $100. In the second "if" bet, you win $50 on Team B, and then $50 on Team A, for a complete win of $100. Both "if" bets together create a total win of $200 when both teams win.

If both teams lose, the result would also function as same as in the event that you played a single "if" bet for $100. Team A's loss would set you back $55 in the first "if" combination, and nothing would go onto Team B. In the second combination, Team B's loss would cost you $55 and nothing would look at to Team A. You would lose $55 on each of the bets for a complete maximum loss of $110 whenever both teams lose.

The difference occurs once the teams split. Rather than losing $110 once the first team loses and the next wins, and $10 once the first team wins however the second loses, in the reverse you will lose $60 on a split no matter which team wins and which loses. It computes this way. If Team A loses you will lose $55 on the initial combination, and also have nothing going on the winning Team B. In the second combination, you'll win $50 on Team B, and also have action on Team A for a $55 loss, resulting in a net loss on the next mix of $5 vig. The increased loss of $55 on the first "if" bet and $5 on the next "if" bet gives you a combined lack of $60 on the "reverse." When Team B loses, you will lose the $5 vig on the initial combination and the $55 on the second combination for exactly the same $60 on the split..

We have accomplished this smaller loss of $60 instead of $110 when the first team loses with no decrease in the win when both teams win. In both the single $110 "if" bet and the two reversed "if" bets for $55, the win is $200 when both teams cover the spread. The bookmakers could not put themselves at that sort of disadvantage, however. The gain of $50 whenever Team A loses is fully offset by the extra $50 loss ($60 instead of $10) whenever Team B is the loser. Thus, the "reverse" doesn't actually save us hardly any money, but it does have the advantage of making the risk more predictable, and avoiding the worry concerning which team to place first in the "if" bet.

(What follows is an advanced discussion of betting technique. If charts and explanations give you a headache, skip them and write down the rules. I'll summarize the guidelines in an an easy task to copy list in my own next article.)

As with parlays, the general rule regarding "if" bets is:

DON'T, when you can win a lot more than 52.5% or more of your games. If you fail to consistently achieve an absolute percentage, however, making "if" bets whenever you bet two teams will save you money.

For the winning bettor, the "if" bet adds an element of luck to your betting equation it doesn't belong there. If two games are worth betting, they should both be bet. Betting on one should not be made dependent on whether or not you win another. On the other hand, for the bettor who includes a negative expectation, the "if" bet will prevent him from betting on the next team whenever the initial team loses. By preventing some bets, the "if" bet saves the negative expectation bettor some vig.

The $10 savings for the "if" bettor results from the point that he could be not betting the second game when both lose. When compared to straight bettor, the "if" bettor comes with an additional cost of $100 when Team A loses and Team B wins, but he saves $110 when Team A and Team B both lose.

In summary, anything that keeps the loser from betting more games is good. "If" bets reduce the amount of games that the loser bets.

The rule for the winning bettor is exactly opposite. Anything that keeps the winning bettor from betting more games is bad, and therefore "if" bets will cost the winning handicapper money. Once the winning bettor plays fewer games, he has fewer winners. Understand that the next time someone lets you know that the way to win would be to bet fewer games. A good winner never wants to bet fewer games. Since "if/reverses" workout a similar as "if" bets, they both place the winner at an equal disadvantage.

Exceptions to the Rule - When a Winner Should Bet Parlays and "IF's"
As with all rules, there are exceptions. "If" bets and parlays should be made by successful with a confident expectation in only two circumstances::

When there is no other choice and he must bet either an "if/reverse," a parlay, or perhaps a teaser; or
When betting co-dependent propositions.
The only time I can think of that you have no other choice is if you're the very best man at your friend's wedding, you're waiting to walk down the aisle, your laptop looked ridiculous in the pocket of your tux which means you left it in the car, you only bet offshore in a deposit account without line of credit, the book includes a $50 minimum phone bet, you like two games which overlap with time, you grab your trusty cell 5 minutes before kickoff and 45 seconds before you need to walk to the alter with some beastly bride's maid in a frilly purple dress on your own arm, you try to make two $55 bets and suddenly realize you only have $75 in your account.

As the old philosopher used to state, "Is that what's troubling you, bucky?" If so, hold your mind up high, put a smile on your own face, search for the silver lining, and create a $50 "if" bet on your two teams. Of course you could bet a parlay, but as you will notice below, the "if/reverse" is an excellent substitute for the parlay for anyone who is winner.

For the winner, the very best method is straight betting. Regarding co-dependent bets, however, as already discussed, there is a huge advantage to betting combinations. With a parlay, the bettor gets the advantage of increased parlay probability of 13-5 on combined bets which have greater than the normal expectation of winning. Since, by definition, co-dependent bets must always be contained within exactly the same game, they must be made as "if" bets. With a co-dependent bet our advantage originates from the truth that we make the second bet only IF one of many propositions wins.

It could do us no good to straight bet $110 each on the favorite and the underdog and $110 each on the over and the under. We'd simply lose the vig regardless of how often the favorite and over or the underdog and under combinations won. As we've seen, if we play two out of 4 possible results in two parlays of the favourite and over and the underdog and under, we are able to net a $160 win when one of our combinations will come in. When to choose the parlay or the "reverse" when coming up with co-dependent combinations is discussed below.

Choosing Between "IF" Bets and Parlays
Based on a $110 parlay, which we'll use for the intended purpose of consistent comparisons, our net parlay win when one of our combinations hits is $176 (the $286 win on the winning parlay minus the $110 loss on the losing parlay). In a $110 "reverse" bet our net win will be $180 every time one of our combinations hits (the $400 win on the winning if/reverse without the $220 loss on the losing if/reverse).

When a split occurs and the under comes in with the favorite, or over comes in with the underdog, the parlay will eventually lose $110 as the reverse loses $120. Thus, the "reverse" includes a $4 advantage on the winning side, and the parlay has a $10 advantage on the losing end. Obviously, again, in a 50-50 situation the parlay would be better.

With co-dependent side and total bets, however, we have been not in a 50-50 situation. If the favourite covers the high spread, it is much more likely that the overall game will review the comparatively low total, and when the favorite fails to cover the high spread, it really is more likely that the overall game will under the total. As we have already seen, if you have a confident expectation the "if/reverse" is really a superior bet to the parlay. The actual possibility of a win on our co-dependent side and total bets depends upon how close the lines privately and total are to one another, but the proven fact that they're co-dependent gives us a positive expectation.

The point where the "if/reverse" becomes a better bet compared to the parlay when making our two co-dependent is a 72% win-rate. This is simply not as outrageous a win-rate as it sounds. When making two combinations, you have two chances to win. You merely need to win one from the two. Each of the combinations comes with an independent positive expectation. If we assume the opportunity of either the favourite or the underdog winning is 100% (obviously one or the other must win) then all we are in need of is a 72% probability that when, for example, Boston College -38 � scores enough to win by 39 points that the game will go over the full total 53 � at least 72% of that time period as a co-dependent bet. If Ball State scores even one TD, then we have been only � point away from a win. That a BC cover can lead to an over 72% of the time isn't an unreasonable assumption under the circumstances.

In comparison with a parlay at a 72% win-rate, our two "if/reverse" bets will win an extra $4 seventy-two times, for a complete increased win of $4 x 72 = $288. Betting "if/reverses" will cause us to lose an extra $10 the 28 times that the outcomes split for a total increased loss of $280. Obviously, at a win rate of 72% the difference is slight.

Rule: At win percentages below 72% use parlays, and at win-rates of 72% or above use "if/reverses."